Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity
نویسندگان
چکیده
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning.
منابع مشابه
Controlled transport of matter waves in driven optical lattices
The idea of controlled manipulation of stable, spatially localized matter-wavepackets is attractive from the point of view of the developing atomic interferometry and precise measurement techniques based on the use of the Bose-Einstein condensates (BECs). In the recent years optical lattices were suggested as a means of achieving controlled transport of matter waves. In particular, theoretical ...
متن کاملVector azimuthons in two-component Bose-Einstein condensates
We introduce matter-wave vector azimuthons, i.e., spatially localized vortex states with azimuthal modulations of density, in multicomponent Bose-Einstein condensates. These localized states generalize spatially modulated vortex solitons introduced earlier in nonlinear optics A. S. Desyatnikov, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. Lett. 95, 203904 2005 and Bose-Einstein condensates ...
متن کاملLinear and Nonlinear Bullets of the Bogoliubov-de Gennes Excitations.
We report on the focalization of Bogoliubov-de Gennes excitations of the nonlinear Schrödinger equation in the defocusing regime (Gross-Pitaevskii equation for repulsive Bose-Einstein condensates) with a spatially modulated periodic potential. Exploiting the modification of the dispersion relation induced by the modulation, we demonstrate the existence of localized structures of the Bogoliubov-...
متن کاملPhotonic crystals for matter waves: Bose-Einstein condensates in optical lattices.
We overview our recent theoretical studies on nonlinear atom optics of the Bose-Einstein condensates (BECs) loaded into optical lattices. In particular, we describe the band-gap spectrum and nonlinear localization of BECs in one- and two-dimensional optical lattices. We discuss the structure and stability properties of spatially localized states (matter-wave solitons) in 1D lattices, as well as...
متن کامل